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Abstract 
This work optimizes the calculation of the intervisibility of two or more points based on 

a triangulated irregular network (TIN). Two different approaches using the R-tree and a 

topological data structure are developed, implemented and tested to evaluate the TIN 

as a data model for visibility analysis. Furthermore, the algorithms are compared in 

calculation time and memory requirements to analyze their efficiency. The topological 

algorithm is up to 10 times faster on high-resolution TINs and outperforms the R-tree 

approach on every available TIN resolution. Apart from that the topological data 

structure is smaller and therefore easier to handle. Finally, the two approaches are 

integrated into a service-oriented architecture using the OGC Web Processing Service. 

Kurzfassung 
In dieser Arbeit wird die Berechnung des direkten Sichtkontakts zwischen zwei oder 

mehreren Punkten basierend auf einem unregelmäßigen Dreiecksnetz (TIN) optimiert. 

Dazu werden zwei Ansätze entwickelt und implementiert die zum einen den R-Baum 

und zum anderen eine topologische Datenstruktur verwenden. Zusätzlich wird auf 

Grundlage dieser Ansätze das TIN als Datenmodel für Sichtbarkeitsanalysen evaluiert. 

Darüber hinaus werden die Algorithmen hinsichtlich Berechnungszeit und 

Speicheraufwand verglichen um ihre Effizienz zu überprüfen. Der topologische 

Algorithmus ist dabei bis zu 10-mal schneller auf hoch aufgelösten TINs und überbietet 

den R-Baum Ansatz auf jeder verfügbaren TIN-Auflösung. Die topologische 

Datenstruktur ist zudem kleiner und somit einfacher zu handhaben. Abschließend 

werden die beiden Ansätze mit Hilfe des OGC Web Processing Service in eine 

serviceorientierte Architektur eingebunden. 
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1 Introduction 
In the recent years airborne laser scanning has replaced the traditional approaches to 

generate elevation data like radar interferometry and image matching. This is mainly 

due to the higher accuracy with more than 20 scanning points per square meter and 

the possibility to penetrate many natural objects like trees. In the course of this rising 

accuracy the data size and the need for fast analyses on this data increases as well. 

One of the trends these days in the course of mobile computing are location based 

services (see GSM Association, 2003). For those services and many other applications 

like navigation systems it is often necessary to know what portion of the client’s 

environment is visible from its current geographical position. It is in the nature of 

things that this information is needed in the very moment and not after a certain time 

in which the position of the client already has changed. Therefore, fast and efficient 

visibility analyses are needed. 

 

 Raster resolution of the digital elevation model [m] 

1 2 5 10 

Maximum 

calculation 

distance [m] 

1000 > 4 min. 27.6 sec 2.8 sec 1.4 sec 

500 33.3 sec 10.4 sec 1.9 sec 1.0 sec 

300 15.2 sec 8.4 sec 1.7 sec 0.9 sec 

200 11.3 sec 7.6 sec 1.7 sec 0.9 sec 

100 9.3 sec 1.7 sec 1.7 sec 0.9 sec 

Tab. 1: Calculation time of the visibility analysis in GRASS GIS according to the raster 

resolution of the digital terrain model and the maximum calculation distance. 

 

Traditional approaches to calculate the visibility on a digital elevation model (DEM) are 

often satisfactory for short calculation distances and low data resolution but 

insufficient on highly accurate data and long calculation distances (see Tab. 1). For 

common airborne laser scanning DEM resolutions of one meter those traditional 

algorithms do not deliver the result in an appropriate time. Also higher distances are 
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often necessary for applications in mountainous regions or for significant points of 

interest. However, high accuracy and high-resolution 3D elevation data is one of the 

needs of the above mentioned applications and that is why new visibility approaches 

are needed.  

The interoperability has become one of the main properties of software applications 

nowadays. A new development in geoinformatics according to the general trend of 

service-oriented architectures is the web-based Spatial Data Infrastructure (SDI) which 

provides the possibility to link distributed files for an analysis or calculation. It is also 

possible to distribute the computation effort on different computers. The Web 

Processing Service (WPS) therefore offers the possibility to integrate a defined set of 

geospatial functionalities into this infrastructure. 

Over the past years many research approaches introduces new algorithms to calculate 

the visibility on digital surface data. Apart from different algorithm proposals, the 

approaches mainly differ in the way the elevation data is represented. Beside the 

traditional raster representation, the triangulated irregular network (TIN) has become 

the basis of many researches (see Goodchild and Lee, 1989; Lee, 1991; De Floriani and 

Magillo, 1999; Kidner et al., 2001; Rana and Morley, 2002; De Floriani and Magillo, 

2003). This data model provides a better representation of the terrain while it saves 

less data points. The TIN can also integrate significant topographic features like ridges 

or peaks (cf. constraint triangulation).  

1.1 Aim and structure of this work 

The aim of this work is to optimize the calculation of the intervisibility of two or more 

points based on a triangulated irregular network (TIN) and the integration of the 

developed methods in a service-oriented architecture using the OGC Web Processing 

Service. Two different approaches based on the R-tree and a topological data structure 

are therefore developed, implemented and tested to evaluate the TIN as a data model 

for visibility analysis. Furthermore, the algorithms should be compared in calculation 

time and memory requirements to find out which one is more efficient. Finally, the 

possibility of integrating the two approaches into a service-oriented architecture 

should be examined. 
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Chapter 2 introduces the related works and explains the fundamentals of LiDAR and 

laser scanning, visibility analyses, service-oriented architecture as well as the OGC and 

the Web Processing Service. The available data is then described in chapter 3. In 

chapter 4 the methodology of this work is explained, which involves in particular the 

development of the two approaches of visibility analysis based on the R-tree and a 

topological data structure as well as the integration into a service-oriented 

architecture. The results of the data structure creation, the two algorithms and the 

developed system are discussed in chapter 5. Chapter 6 concludes with the research 

findings of this work and the future prospects. 
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2 Related Work 

2.1 LiDAR and airborne laser scanning 

Laser scanners are active remote sensing systems using a laser (Light Amplification by 

Stimulated Emission of Radiation) beam to measure the distance between the sensor 

and the illuminated surface or object and are therefore often described with the 

acronym LiDAR (Light Detection and Ranging) (Wehr and Lohr, 1999; Gomarasca, 

2009). Based on the speed of light in vacuum the time taken by the laser pulse from 

the emission to the arrival of the reflection is used to calculate this distance (Fig. 1) 

(Gomarasca, 2009). The laser scanning systems are subdivided in terrestrial laser 

scanning (TLS), for stationary scanners, and airborne laser scanning (ALS), for scanners 

installed on any flying object like aircrafts, helicopters or even Unmanned Aerial 

Vehicles (UAVs). 

 
Fig. 1: The simplified principal of airborne laser scanning. 

(modified: Höfle and Rutzinger, 2011:4) 

 

Airborne laser scanning is often used to generate digital elevation models (DEMs) 

whose required accuracy is realized by a position and orientation system (POS), 
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including a differential GPS (DGPS) and an inertial measurement unit (IMU) (Fig. 2) 

(Wehr and Lohr, 1999; Ackermann, 1999). One of the major differences between 

airborne laser scanning and traditional techniques like radar interferometry and 

stereo-photogrammetry with image matching is the possibility to penetrate objects 

without a continuous surface like trees of cornfields. If such an object is scanned, the 

laser might see through small gaps in between the object and may deliver several 

reflections, as from the top of the object as well as the terrain below it. With those 

reflections it is possible to create a digital surface model (DSM) as well as a digital 

terrain model (DTM) from the resulting point cloud. Another advantage of the airborne 

laser scanning compared to photogrammetric approaches is the active emission of the 

laser beam which makes the system independent from the illumination of the sun. 

Thus, problems with shadows from trees or nearby houses do not exist. The accuracy 

of the extracted DEM mainly depends on the point density, which is affected by the 

flying speed and height, the pulse rate of the laser and the scan angle (Ackermann, 

1999). Today’s laser scanners reach point densities of 10-20 points/m² (Vosselman, 

2008) which allows the generation of very detailed DEMs (e.g. planimetric resolution 

below 1 meter). 

 

 
Fig. 2: A typical ALS system. (Wehr and Lohr, 1999:69) 
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Hence, airborne laser scanning is a highly accurate way to generate DEMs with a highly 

degree of automation (Ackermann, 1999) and is apart from that a standard in a wide 

range of applications nowadays (Large and Heritage, 2009) like mapping of roads or 

electrical lines, generation of 3D city models as well as rapid mapping and damage 

assessment after natural disasters (Wehr and Lohr, 1999). Airborne laser scanning is 

also an often used tool in many areas of research. For example the penetration 

characteristic of the laser was early used to determine tree heights by Næsset (1997) 

and is nowadays used to estimate the aboveground biomass in forests (Jochem et al., 

2011). Another area in which the airborne laser scanning is widespread is glaciology. 

Early approaches compared the laser scanning with traditional photogrammetric 

techniques for glacier monitoring and change detection (Baltsavias et al., 2001; Geist 

et al., 2003; Arnold et al., 2006) while new studies analyze the possibility of surface 

classification for glacier surfaces to quantify their changes (Höfle et al., 2007). An 

overview of the use of airborne laser scanning for geomorphological applications and 

related fields is made by Höfle and Rutzinger (2011).  

2.2 Visibility analysis 

Along with the accuracy and the resolution of DEMs, the potential of the laser data 

increases significantly. Many applications nowadays are based on highly efficient 

analyses (see chapter 1). One of the possible analyses on elevation data is the visibility 

analysis which is described in the following.   

 

 
Fig. 3: The field of view of an observer. 

Target 1 is fully and target 2 is partially 

visible. 

Fig. 4: The direct lines (LOS) between an 

observer and two targets. Target 2 is visible 

while target 1 is hidden behind the terrain. 
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Basically it is important for the visibility calculation to define in which case an object, 

for example a tower, is visible. If the tower has to be fully visible from the base to the 

top, the calculation has to be based on the terrain elevation below the target point. If 

it is enough to see just a part of the tower, the actual elevation of the target point has 

to be integrated in the visibility analysis (see Kidner et al., 2001). In this work an object 

is declared as visible if it is partially visible from the given viewpoint like target 2 in 

figure 3. 

The visibility analysis can be classified in three categories according to the dimension 

of their output (Fig. 5) (De Floriani and Magillo, 1994): 

• Point visibility 

• Line visibility 

• Region visibility 

 

 
Fig. 5: Comparison of the three categories of visibility analyses. (a) Point visibility;  

(b) Line visibility; (c) Region visibility. 

 

The point visibility analyses the intervisibility of two or more points and is based on the 

direct line between an observer point and a target point, named line-of-sight (LOS). If 

the LOS is intersected by any part of the terrain, we assume that the corresponding 

target is not visible from the observer (Fig. 4). The output is a set of points that are 

visible from the given viewpoint. The line visibility also uses the LOS to determine the 

visibility of a target. In contrast to the point visibility it delivers the actual visible part of 

the line-of-sight for any point pair. In this case it does not matter if the target is visible 

from the observer or not. The region visibility is the most complex calculation from the 

above-mentioned and delivers the visible area around the observer independent from 

any specific target (De Floriani and Magillo, 1994). In geographical information systems 

(GIS) this latter case is often called “viewshed analysis”.  
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Apart from the output dimension, visibility analyses mainly differ in the underlying 

data models (Fig. 6). The traditional way of presenting elevations is the raster data 

model, in which the data is stored in a regular grid in the x-y-plane with a specific 

resolution (Kidner et al., 2000). This makes the raster a simple data model and 

therefore easier to analyze (Andrade et al. 2011). As one can see in Figure 6a, all points 

in one cell have the same elevation, which results in a sudden step at the cell 

boundaries and which is, at low resolution, one of the reasons why raster data is often 

regarded as less accurate and not capable for terrain modeling (see Lee, 1991). The 

other traditional representation of elevation data is the Grid. It is based on a regular 

mesh in which the elevation data is stored in the center points of each cell. In this data 

model the height at the cell borders can be interpolated from the four nearest 

elevation points and the sudden steps are avoided. Anyway, at high resolution the 

raster certainly has a higher accuracy, but also requires more memory space even 

though this is not the decisive factor anymore these days (Andrade et al. 2011). Due to 

the straightforward analysis of raster data, there were many studies about 

intervisibility and viewshed calculation on raster data, in recent years especially in 

external memory. Franklin et al. (1994) studied the geometric aspects of the visibility 

problems in the placement of air defense missile batteries and therefore analyzed the 

three algorithms R3, R2 and Xdraw for calculating the viewshed around an observer 

and four visibility index algorithms. Cohen-Or and Shaked (1995) detected visible and 

hidden areas from a given viewpoint by working directly on a Digital Elevation Map 

rather than a polygonal representation of the surfaces. Their algorithm processed 

discrete LOS and tests the unit-sized terrain elements along their discrete cross-

sections. Wang et al. (2000) proposed an algorithm for computing viewshed on 

gridded DEMs by using reference planes instead of sightlines and defined a target 

point as visible if it lies on or above the reference plane build by the viewpoint and a 

pair of adjacent points. Izraelevitz (2003) introduced an approach for the viewshed 

calculation which relies on an approximate line-of-sight computation in which previous 

calculated intervisibility information is reused.  Haverkort et al. (2007) described a new 

application of the technique of distribution sweeping (see Goodrich et al., 1993) to 

calculate the viewshed in external memory based on the algorithm of Van Kreveld 
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(1996). Andrade et al. (2011) proposed another algorithm for the viewshed calculation 

in external memory as well which is adapted to the work on manipulating huge 

terrains of Franklin and Ray (1994) and Franklin (2002). 

 

 
Fig. 6: Raster (a) and TIN (b) data models of the same terrain.  

(Maloy and Dean, 2001:1294) 

 

The triangulated irregular network (TIN), presented by Peucker et al. (1978), as 

another possibility for terrain modeling has become the basis in many research 

approaches. Goodchild and Lee (1989) demonstrated how to locate the minimum 

number of viewpoints to see an entire surface as well to locate a fixed number of 

viewpoints to maximize the visible area and defined the TIN as the most suitable data 

structure for their work. Lee (1991) exposed five visibility problems and introduced 

three different heuristic algorithms to demonstrate solutions for these problems based 

on a TIN. De Floriani and Magillo (1999) and De Floriani and Magillo (2003) gave an 

overview of algorithms for calculating visibility structures like the viewshed and the 

horizon as well as visibility queries based on TINs and Regular Square Grids (RSGs). 

Kidner et al. (2001) introduced an approach to analyze the intervisibility on Multiscale 

Implicit Triangulated Irregular Networks (Kidner et al., 2000) at multiple resolutions by 

searching for intersection between the LOS and the terrain and comparing the angles 

to the viewpoint. Rana and Morley (2002) optimized the visibility calculation by using 

topographic features like peaks, pits and passes derived from the TIN as observer 

points using ArcView. 
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As the name implies the TIN is a network of non-overlapping triangles build out of a set 

of irregular arranged points (Figure 6b). Hence, it builds a continuous surface without 

any sudden steps, as previously mentioned for the raster data. Furthermore, the TIN 

can adapt to characteristical surface points (Peucker and Douglas, 1975), like ridges, 

channels, peaks or pits and is thus a good way to represent the terrain surface (see 

Peucker et al., 1978; de Floriani, 1987). 

Due to the irregular arranged points, the generation of the TIN could produce many 

different results, because the edges between the points can be chosen arbitrarily. This 

triangulation method may result in many large and thin or elongated triangles that are 

not matching the surface very well. To avoid this, the most common method to create 

a TIN is the Delaunay triangulation (see de Berg et al., 2008). This method only builds a 

triangle if no other point is within the circle build by its three points, which results in 

the creation of smaller but expanded triangles. With those triangles the 

characteristical points of a terrain surface can be modeled superiorly. Another 

advantage over the arbitrary triangulation is that the result is always the same, no 

matter with which points the algorithm begins (de Lange, 2005). 

 

 
Fig. 7: Intervisibility calculation on a TIN. (Kidner et al., 2001:23) 
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This work will concentrate on the intervisibility on triangulated irregular networks. 

Kidner et al. (2001) present an algorithm for this purpose which builds the basis for the 

developed algorithms in chapter 4. In that algorithm the two triangles enclosing the 

observer and target first have to be identified. Afterwards the intersection points from 

the LOS with the triangles edges in the x-y plane has to be calculated (Fig. 7) and their 

height has to be determined by a linear interpolation. Finally, the angles from the 

observer to the intersection points are compared with the angle of the LOS. If one 

angle to an intersection point is higher than the angle of the LOS, the target is not 

visible. 

2.3 Service-oriented architecture 

"A Service-Oriented Architecture (SOA) is a software architecture that is based on the 

key concepts of an application frontend, service, service repository, and service bus." 

(Krafzig et al., 2004) (Fig. 8). It is important to clarify, that SOA is not a defined 

standard like XML-RPC (van Engelen et al., 2000) or SOAP (W3C, 2007) but an 

architecture or a framework for distributed systems (Melzer, 2010).  

 

 
Fig. 8: Overview of the components of a SOA. (Krafzig et al., 2004:57) 
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The application frontend can be any kind of interface to control or start one or many 

services but is not necessarily controlled by an end-user. A service delivers the 

functionality to solve a given job which often reflects a precise workflow in a business. 

The contract of the service specifies the functionality, explains the usage and shows 

possible constraints. This contract has to be fulfilled in the implementation which can 

be considered as the atomic parts of the workflow and which includes the whole logic 

and data to solve the given job. The interface exposes the functionality to clients or 

others services that are connected with the service. All services can be stored in a 

service repository which delivers the needed information about the usage as well as 

the metadata of a specific service. A repository is not necessarily needed for a service-

oriented architecture but it is often very useful. The service bus is responsible for the 

interoperability and the connection between the services and the frontend (Krafzig et 

al., 2004). 

The main characteristics of a SOA are the loose coupling, which describes the dynamic 

linkage of services among themselves on demand, the usage of open standards for the 

interfaces and the principle of reuse (Melzer, 2010). The well-known implementations 

of the service-oriented architecture are web services which are forced to use existing 

interfaces and open protocols (Melzer, 2010; Offermann et al., 2006).  

2.3.1 The Open Geospatial Consortium 

The Open Geospatial Consortium (OGC) is a consortium of 419 partly meaningful 

members like ESRI, IBM, Google, Microsoft and the European Space Agency (ESA) 

(Open Geospatial Consortium, 2011a) as well as smaller companies and universities 

(Open Geospatial Consortium, 2011b). The OGC wants to establish the interoperability 

of geospatial services and the integration of geospatial content into other business 

processes (Mitchell et al., 2008). Therefore, many freely available interface standards 

for geospatial applications have been developed by the OGC (Open Geospatial 

Consortium, 2011b). The OGC Standards vary from implementation guidelines for web 

service developers, over the common architecture for simple feature geometry (see 

Open Geospatial Consortium, 2010a) to encoding definitions such as GML (Open 

Geospatial Consortium, 2011c). 
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Apart from the well-known standards like the Web Feature Service (WFS) and the Web 

Map Service (WMS) (see Open Geospatial Consortium, 2005; Open Geospatial 

Consortium, 2006), which are standard parts of geo-software for years, the Web 

Processing Service (WPS) standard is implemented and supported by more and more 

geospatial applications.  

2.3.2 The Web Processing Service (WPS) 

The Web Processing Service (WPS) is an OGC standard for publishing geospatial 

processes with the general goal of offering any kind of GIS functionality to the client 

across a network. In this context processes are containing pre-defined algorithms 

which work on spatial referenced data. Publishing is defined by the OGC as creating 

machine-readable as well as human-readable information. A high number of metadata 

allows the client to discover the needed service and explains how to use it. The WPS 

can process vector as well as raster data. This data can be delivered across a network 

or can be directly read from the server (Open Geospatial Consortium, 2007). 

 
Fig. 9: UML diagram of the three different data types of the WPS.  

(Open Geospatial Consortium, 2007:67) 

 

The OGC defines three different types of data as input and output for the WPS (Fig. 9). 

The “ComplexData” defines any complex data type such as XML or raster data. The 
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value of this data type can be directly encoded into a client request or made available 

by a URL. The format of a “ComplexData” can be defined by a MIME-type or a URI to a 

given encoding or schema. In addition a process can define the maximum number of 

megabytes of the complex data.   

The “LiteralData” represents any data that can be represented in a character string. 

Therefore, the data type and the unit of measure can be defined. Beyond that a 

process can specify a set of allowable values as well as a default value for this data 

type.  

The “BoundingBoxData” is a data type which is originally defined in the OGC Web 

Services (OWS) Common Standard (see Open Geospatial Consortium, 2010b) and can 

additionally be used as a data type in the WPS. This data represents a bounding box 

defined by its lower and upper corners, the underlying coordinate reference system 

and the dimension of it. 

The WPS can be requested by the client using HTTP GET with KVP (key value pair) 

encoding, HTTP POST with XML encoding and the Simple Object Access Protocol 

(SOAP). The general parameters for every OGC web service request are “service”, 

which will in the case of the WPS always be set as “WPS”, “request”, which defines the 

requested operation, and “version”. 

The WPS provides three different operations which can be requested by the client: 

- GetCapabilites 

- DescribeProcess 

- Execute 

The “GetCapabilities” operation delivers a metadata document that describes all 

abilities of the service. Additional parameters of this operation are “AcceptVersions” 

and “Language”, if multilingual services are implemented. An exemplary request of this 

operation might therefore look like this:  

http://foo.bar/foo?service=WPS&Request=GetCapabilities&version=1.0.0& 

language=de-DE 

The response of this operation is a XML file which contains metadata about the 

service, metadata about the provider, a list of the available operations as well as a list 

of the offered processes and many more information. 
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The “DescribeProcess” operation delivers detailed information about the offered 

processes. This includes the required input parameters with their allowed formats and 

the expected output. The parameter “Identifier” defines one or many processes that 

should be described: 

http://foo.bar/foo?Service=WPS&Request=DescribeProcess&Version=1.0.0& 

Language=de-DE&Identifier=intersection,union 

This request delivers an XML file as well. This file contains general metadata about the 

process as well as metadata about the in- and outputs like the identifier, title, abstract 

and data type. Furthermore, the two process parameters “storeSupport”, which 

specifies whether complex data is stored by the WPS, and “statusSupported”, which 

indicates a quick response of the process status for long calculations, are listed.   

The “Execute” operation runs one or more specified processes that are implemented 

on the WPS. Therefore, the processes have to be declared using the known parameter 

“Identifier”. All required data inputs have to be set in the parameter “DataInputs”. The 

response form can be defined using “ResponseDocument”, which returns the result as 

a part of the WPS response, or using “RawDataOutput”, which delivers the result 

without a WPS response document:  

http://foo.bar/foo?request=Execute&service=WPS&version=1.0.0& 

language=de-DE&Identifier=Buffer&DataInputs=Object=@xlink: 

href=http%3A%2F%2Ffoo.bar%2Ffoo;BufferDistance=10&ResponseDocument= 

BufferedPolygon 

The response of this operation depends on the defined response form. The simplest 

case would be the “RawDataOutput” in which the result is directly returned to the 

client. In all other cases an XML document is responded whose structure depends on 

the following parameters. If “storeExecuteResponse” is true, the result is stored at a 

web accessible URL which is then included in the XML file as 

“executeResponseLocation”. In case that the “asReference” attribute is not set, the 

complex data will also be included in the response document. If “statusSupported” and 

“storeExecuteResponse” are true, the status of the response document is kept up to 

date. Therefore, the status element has the five possible choices “processAccepted”, 

“processStarted”, “processPaused”, “processSucceeded” and “processFailed” (Fig. 10).  
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Fig. 10: UML diagram of the five possible choices of the status element of a WPS 

process. (Open Geospatial Consortium, 2007:68) 

 

The typical workflow of an interaction with the WPS thus starts with the request of the 

server abilities using the “GetCapabilities” operation. This operation delivers among 

others a list of the offered processes whose detailed description can be retrieved with 

the “DescribeProcess” operation. The “Execute” operation finally runs the selected 

processes and returns the result in a specific output format. 

2.3.3 The PyWPS 

Since the first OGC specifications for the Web Processing Service in 2005, several 

implementations of the standard were developed (see Brauner et al., 2009). The 

company lat/lon GmbH in cooperation with the GIS and Remote Sensing Unit of the 

Department of Geography at the University of Bonn integrates a Java implemented 

WPS in its software package “deegree” with the name “deegree 3 processingService” 

(see deegree, 2011). Another Java implementation of the WPS is presented by the 

project WPSint (see Tigris, 2011). The ZOO Project defines itself as a open WPS 

platform and provides the possibility to develop processes in many different 

programming languages like C, Python,  PHP, Java, Perl and Fortran (see ZOO Project, 

2011). The 52°North Initiative for Geospatial Open Source Software GmbH presents 

one more Java based implementation with its “52°North WPS”.  
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The WPS implementation used in this work is a project called “PyWPS” which started 

in April 2006 and was released in version 1.0.0 in August 2006 (see Čepický and Becchi, 

2007). The PyWPS is implemented in Python and was originally developed to build a 

connection between the UMN MapServer and GRASS GIS. Later the functionality was 

extended to run without GRASS GIS in the background but with any other system or 

Python library. Apart from that, the PyWPS still supports the connection to GRASS GIS 

and therefore provides its whole functionality.  

Due to its easy extensibility the PyWPS was used in some recent research approaches 

where it is for instance used in combination with Google Earth over the GridJet 

protocol and demonstrate its good efficiency (Wang et al., 2009). The current stable 

version of the PyWPS is 3.1.0 and the version 3.2 is in the development. 

The processes of the PyWPS are written in Python as well and are represented by a 

class called “Process” with one mandatory method “execute”. This method is called 

when the process is executed by the client and contains the actual calculation logic.  

In the initializing method of the class, the general metadata of the process as well as 

the input and output data has to be defined:  

class Process(WPSProcess): 

  def __init__(self): 

          WPSProcess.__init__(self,  

              identifier = "visTopo", 

              title = "Analyze the visibility on the topological  

                       data structure", 

   abstract = """Analyze the visibility on the topological  

                       data structure""", 

   version = "1.0", 

   storeSupported = True, 

   statusSupported = True) 

 

          self.observer_x = self.addLiteralInput(identifier = "observer_x", 

   title = "Observer x-coordinate", 

   type = type(0.0)) 

     […] 

     self.visible = self.addLiteralOutput(identifier = "visible", 

              title = "Visibility of the target") 
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  def execute(self): 

     […] 

In this sample process one can see the identifier, title, abstract and version of the 

process as well as the two WPS parameter “storeSupported” and “statusSupported”. 

One floating-point number is defined as a “LiteralData” input parameter for the 

process which in this case represents the X-coordinate of the observer point. Also 

defined in the previous example is a “LiteralData” output parameter which represents 

the visibility of the target and is part of the WPS response to the client.  
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3 Study area and data sets 

3.1 Study area 

The study area of this work is located in the city of Osnabrück in northern Germany. In 

Figure 11 one can see the area in which laser scanning data as a digital surface model 

(DSM) is available. The area is 5200 x 3600 meters (approx. 19 km²) large. The terrain is 

rather plane except for the some minor elevations like the Westerberg in the 

northwest and the Schinkelberg in the north. Also obvious in Figure 11 is the 

predominant urban structure of the study area with only a few green regions in the 

northwest, northeast and southwest apart from the urban green spaces.  

 

 
Fig. 11: Aerial image of the study area (red) in Osnabrück. (Google Earth) 
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3.2 Available data structure 

The digital surface model as can be seen in Figure 12 is available in the AAIGrid 

(Arc/Info ASCII Grid) format and is referenced to the DHDN Gauß-Krüger zone 3 which 

is based on the Bessel ellipsoid from 1841. It has 5269 columns and 3593 rows with the 

cell size 1 meter. The elevation varies between the minimum of 12.64 meters up to the 

maximum of 174.29 meters. 

 

 
Fig. 12: Digital surface model (DSM) of Osnabrück (high elevations: bright; low 

elevations: dark). 

3.3 TIN creation 

For the following work, the raster elevation data has to be converted into a 

triangulated irregular network based on the center points of each grid cell. The raster 

to TIN conversion was performed with the 3D Analyst extension for the software 

ArcMap 9.3 by ESRI (see ESRI, 2010a). In this process some center points of the raster 

are used to create a candidate TIN which first of all covers the whole raster without 

representing the surface very well. Afterwards the TIN is incrementally improved by 
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adding new points to reach the predefined z-tolerance (the maximum difference in the 

z units) between the raster and the TIN (Fig. 13) (ESRI, 2010b). 

 

 
Fig. 13: Illustration of the general idea of the raster to TIN conversion. (ESRI, 2010b) 

 

If the z-tolerance is very small or the raster data has a high roughness the points of the 

TIN strongly increases (ESRI, 2010b). To test the calculation speed of the upcoming 

methods on different data accuracies, the TIN is generated several times with varying 

z-tolerances and are saved as polygons in the ESRI-Shape format. Thus the below listed 

TINs are available in the following work and are mainly referred by its name from now 

on:  

 

Name Tolerance [m] Triangles Disk space [MB] 

TIN15 15 165303 (2.89%) 35 (2.90%) 

TIN10 10 531717 (9.31%) 112 (9.30%) 

TIN8 8 836606 (14.65%) 176 (14.61%) 

TIN2 2 5709027 (100.00%) 1204 (100.00%) 

Tab. 2: Available TIN data sets (the percentages refer to the largest value in the 

respective column). 

 

Figure 14 shows a part of the DSM of the city center of Osnabrück. Visible in this 

subset are the St. Katharinen church (red box), the castle of Osnabrück (blue box) and 

some common multi-level buildings (green boxes). As one can see the church spire is 
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the highest point in this region with 103 meters. The roof of the castle is with up to 25 

meters just a bit higher than the other buildings around it with about 20 meters.  

 

 
Fig. 14: DSM of a part of the city center of Osnabrück with the St. Katharinen church 

(red), the castle of Osnabrück (blue) and some common multi-level buildings (green). 

 

The corresponding TIN subsets of the same part of the city center are shown in 

figure 15. In the top left picture one can see the TIN2. Almost every detail of the digital 

surface model is still available like for example the nave of St. Katharinen. Every 

building in the east can be optically separated from each other and also the structure 

of trees (around the church) is identifiable. The top right image in figure 15 shows the 

TIN8. The both characteristical buildings, the church and the castle, are still clearly 

recognizable. The buildings in the east are now merged to larger triangles and can 

hardly be differentiated. In the bottom left image of figure 15 the TIN10 is illustrated. 

The church and the castle are still identifiable but their shape is very simplified. The 

eastern buildings are highly aggregated and cannot be separated correctly. The image 

on the bottom right of figure 15 shows the TIN15. Exclusively the church can be 

recognized correctly. The castle is highly simplified and the buildings in the east are 



Chapter 3 - Study area and data sets 
  

23 

merged to some few large elevations. It is obvious that the TIN15 data set can just be 

used as a test data set for performance analysis and that the results on it are not 

convenient. TIN8 and TIN10 are questionable due to their quality of representing the 

given structures but approximations on these data sets might be reasonable. TIN2 

represents the part of the city well and should deliver correct and realistic visibility 

results.  

 

   

   
Fig. 15: The four available TINs of a part of the city center of Osnabrück. Top left: TIN2; 

Top right: TIN8; Bottom left: TIN10; Bottom right: TIN15.  

(size of subfigures: approx. 340 x 280 meters) 

 

The quality of the TIN in general has to be adapted to the question of the planned 

work and study area. In rural or mountainous regions the z-tolerance of the TIN can be 

chosen higher as small elevations are often not decisive in the visibility calculations 

and the distances between the observer and the target are often much higher. In 

urban regions the z-tolerance has to be lower as the distance between the observer 
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and the target are lower and also objects with a height about 2 meters can constrain 

the visibility. In this latter case it might be useful to integrate 3D building models or 

floor plans to define in which areas the tolerance can be chosen higher (open areas) or 

lower (built-up area). 
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4 Methodology 
The methodology and the ideas of the developed visibility algorithms as well as the 

fundamentals of both algorithms and the programming logic are described in this 

chapter. Furthermore, a SOA-conform system design which integrates the two 

approaches is introduced and explained in detail. 

4.1 Visibility analysis using the R-tree 

In this chapter a straightforward approach is presented to analyze the intervisibility of 

two points. The idea is to incrementally parse the line-of-sight from the observer to 

the target and to detect and analyze every intersection with the TIN. For this, the                   

R-tree, a specific data structure, is used.   

4.1.1 Fundamentals of the R-tree 

The R-tree is a hierarchical data structure for spatial searching based on the height 

balanced B+ tree and was originally presented by Antonin Guttman in 1984. It 

dynamically organizes d-dimensional geometric objects by storing their minimal 

bounding rectangles (MBR). All inner nodes of the R-tree are therefore containing the 

MBRs of their children. According to the B+ tree (see Kemper and Eickler, 2006), the    

R-tree saves the data objects by pointers in its leaves (Guttmann, 1984; Manolopoulos 

et al., 2005). Figure 16 shows a set of nested MBRs (a) as well as the corresponding    

R-tree structure (b). In the MBR R8 one can see the actual spatial data object.  

One of the most frequent queries on an R-tree is the window or intersection query, 

which retrieves all MBRs that are intersecting a given search rectangle (Arge et al., 

2004). Another usual query is the nearest rectangle query, which makes sense if no 

intersection of the search rectangle is expected.  
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Fig. 16: (a) An example of nested minimally bounding rectangles (solid and dashed 

lines). R8 shows a sample data. (b) The corresponding R-tree data structure.  

(Guttman, 1984:49) 

 

 

 

(a) 

(b) 
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4.1.2 Algorithm 

The general idea of the algorithm is to parse the line-of-sight with a given step size and 

overlapping factor and to determine the intersected triangle edges using the R-tree 

(Figure 17). Hence, the TIN has to be converted into an R-tree data structure. For this 

purpose an already existing Python module for the R-tree (see Python, 2011a) as well 

as the Python bindings for the Geospatial Data Abstraction Library (GDAL) and OGR 

(see Python, 2011b) are used. The latter module offers the possibility to directly read 

ESRI Shape files and to create own geometries according to the OGC simple features 

(see Open Geospatial Consortium, 2010a). 

 

 
Fig. 17: General idea of the visibility analysis using the R-tree 

 

First of all the TIN has to be imported using the classes of the OGR module. As the        

R-tree has to find single edges of a triangle, each triangle has to be split up. The easiest 

way to do this is to split the WKT (well-known text) string and rebuild the single edges 

of the triangle with OGR. Finally, the R-tree has to be build by adding these edges with 

its corresponding minimal bounding rectangle. 
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Fig. 18: Different lines-of-sight with different slopes. 

 

Before the visibility can then be analyzed, the algorithm has to check some 

fundamental parameters of the given line-of-sight. As one can in figure 18 the slope is 

very important for the parsing direction. If the algorithm would always parse the LOS 

along the x-axis, lines with higher slopes will create in the worst case only one large 

window query (see R-tree query of target 1 in figure 18). In this case all triangles edges 

within the window query have to be checked for intersection. The actual pros of the 

algorithm, which is the abort after an early intersection with the LOS is found and the 

preselection of possible intersected edges, do not exist and this should be avoided. 

Thus the parsing direction has to switch if the slope is greater than 1 which then 

results in many small window queries, as intended.  

After determining the parsing direction, the algorithm has to check whether the 

coordinate (x or y) has to be incremented or decremented based on the position of the 

observer. Let us assume a local coordinate system between the observer and an 

arbitrary target point with the observer point as the origin. In this coordinate system 

the two introduced parameters are representing four imaginary zones (Fig. 19). The 

algorithm has to handle these zones individually to parse any possible LOS correctly. 
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Fig. 19: The blue and green zones show the different parsing directions according to 

the slope of conceived lines-of-sight. The different line directions symbolize the zones 

in which the direction increases or decreases. 

 

Another problem that the algorithm has to deal with is the possibility that the TIN 

intersects the LOS in exactly the same point in which one query window ends and the 

next query window starts (Fig. 20a). In this improbable case the intersection might not 

be recognized. This should be avoided by including an overlapping factor, which 

defines the regression on the LOS, for the query windows (Fig. 20b). In this work an 

overlapping factor of 0.5 is used for all calculations which mean that the new window 

query begins a half step behind the actual new starting point on the LOS. This results in 

an overlapping for the window queries of 25%. 
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Fig. 20: Possibly undetected intersection (red line) with the TIN (a), avoided by 

overlapping query windows (b). 

 

The whole logic of the algorithm is shown in figure 21. First the observer is defined as 

being the start point for the parsing and the slope of the LOS is calculated. The slope 

then defines if the LOS is parsed along the x- or the y-axis. Afterwards the actual 

parsing process begins by deciding if the x- or y-coordinate has to be increased or 

decreased. Now the query window can be calculated and the possibly intersecting 

edges can be determined by querying the R-tree. All possible edges are then checked 

for an intersection with the LOS. If an intersection point is found, its height is 

calculated by a linear interpolation between the edge points. Finally, the two available 

slopes have to be compared. If the slope of the LOS is less than the slope from the 

observer to the intersection point, the target cannot be visible and the parsing process 

should be aborted. 
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Fig. 21: The logic of the visibility algorithm. 

4.2 Visibility analysis using a topological data structure 

In this chapter an advanced approach is presented to analyze the intervisibility of two 

points. The idea is to organize all triangles in a modified topological data structure, 

which makes the parsing of the LOS unnecessary. Starting at the triangle surrounding 

the observer point, the algorithm can navigate through the triangles independently as 

the neighboring triangles are directly stored in the data structure.  

4.2.1 Fundamentals of the topological data structure 

Topology relating to spatial data typically describes the spatial relationships between 

neighboring objects. Accordingly a topological data structure is representing these 
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objects including their relationships. The three primitives points, edges and areas (in 

this case triangles) are used to describe 2-dimensional data (Yeung and Hall, 2007; 

Thalheim and Libkin, 1998). Figure 22 shows four triangles with their points and edges 

as well as the corresponding data structure. It is obvious that no primitive is stored 

redundant. The points are represented by their x- and y-coordinates whereas the 

edges only save their start- and endpoint. The triangles are build by three edges and in 

some approaches are additionally saving their neighbors. With this information the 

objects and their relationship to each other can be derived.    

 
Fig. 22: Four triangles with their points and edges and the corresponding topological 

data structure. 

In this approach a quite similar data structure is used. Regarding the high number of 

triangles of the available TINs, the data structure is designed in a simpler way (Fig. 23). 

For each triangle its three points with their x-, y- and z-coordinates are saved from 

which the edges can be derived. Also the corresponding neighbors for each of these 

edges are saved separately. 

 
Fig. 23: Data structure used in this approach. 
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4.2.2 Algorithm 

The parsing of the line-of-sight might generate R-tree queries which do not contain any 

intersection point with the LOS at all but many possible intersecting lines which have 

to be analyzed. This results in a high amount of calculation time without delivering any 

meaningful output. The general idea of the algorithm is to just select the intersected 

edges by navigating through the TIN independently based on the topological data 

structure. If the first intersection with one edge of the initial triangle, which is 

surrounding the observer point, is found, the next intersection must be with one of the 

edges of the neighbor with whom the selected edge is shared. Figure 24 shows the 

principle of this idea. The initial triangle is T1 and its intersecting edge with the LOS is 

E1. The neighbor T2 with whom T1 shares the edge E1 can be directly derived from the 

data. The edges of T2 then have to be checked for a new intersection with the LOS to 

find the next triangle. Following this logic the algorithm navigates through the TIN until 

no new intersection can be found and the target triangle T6 is reached. 

 

 

    
Fig. 24: General idea of the visibility analysis using a topological data structure. 

 

Accordingly before the visibility can be analyzed, two preliminary works have to be 

done. First the data structure has to be created and then the initial triangle has to be 

found. Therefore, the known Python modules for the R-tree and GDAL are used (see 

chapter 4.2.3). 
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The logic to create the topological data structure is shown in figure 25. First of all the 

TIN file has to be imported and the triangle points are extracted from the WKT strings. 

The triangles are saved in an associative array, in Python named dictionary, which is a 

collection of keys with associated values. In this case the ID-number of the triangle will 

be the key and the corresponding value will be the points of the triangle, saved in the 

Python data type tuple.  

Subsequently the previous introduced R-tree helps to enhance the upcoming building 

of the topology. Apart from that it can be used to solve the problem of finding the 

initial triangle in the visibility analysis. Therefore, the triangle ID-numbers are inserted 

into an R-tree with the minimal bounding rectangle of the corresponding triangle.  

 

 
Fig. 25: The logic to create the topological data structure. 
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Finally, the topology has to be build. The neighborhood of the triangles is stored in a 

dictionary as well and has to be initialized with empty entries. The key for these entries 

will also be the ID-number and the value will contain the neighbors, stored in a tuple, 

whose position (1, 2 or 3) defines the shared edge of the triangle and its neighbor. 

Thus the corresponding neighbor can be directly addressed if an intersected edge is 

found during the visibility analysis. Typically the neighborhood is determined by 

looping through the triangles twice, as every triangle has to be compared with the 

whole set of triangles until its three neighbors are found. This process can be improved 

using the R-tree. Instead of comparing each triangle with every other, an R-tree 

window query can be used to narrow the number of triangles to the ones around the 

current selected triangle. Thus the calculation complexity decreases significantly.  

Furthermore, for every detected neighbor, both neighborhoods, the one of the current 

selected triangle and the one of its neighbor are updated. Therefore, the algorithm fills 

multiple neighborhoods with one iteration only. Hence, it is important to check the 

triangles before starting the detection process, as the neighborhood might already 

been set. 

 

After creating the topological data structure the visibility can be analyzed. Figure 26 

shows the logic for this algorithm. As mentioned before, the R-tree is used to find the 

initial triangle. More precisely a nearest rectangle query with a small bounding box 

around the observer point delivers the possibly starting triangles. These triangles have 

to be checked for containing the observer point using the Python module OGR. After 

the initial triangle is found, the algorithm starts to analyze this triangle in a separate 

method. The three edges of the triangle are created and afterwards checked for 

intersection with the LOS. If one intersection is found, the algorithm saves the 

intersection point and determines the corresponding neighbor out of the neighbor 

dictionary. The height of the intersection point is then linearly interpolated and thus 

the slope from the observer to the intersection point can be calculated. If this slope is 

greater than the slope of the LOS the target point is not visible. Else the method is 

called recursively to analyze the neighbor triangle. This recursion will last until the end 

triangle is reached, which means that no new intersection is found between the three 
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triangle edges and the LOS. In this case the LOS is not intersected by the terrain and 

the target is visible. 

 

 
Fig. 26: The logic to analyze the visibility on the topological data structure. 

4.3 Development of a SOA-conform system 

In this chapter the introduced approaches are integrated into a service-oriented 

architecture in this case as a web service. Therefore, the PyWPS (see chapter 2.3.4) is 

used. It provides the whole functionality and structure which is required according to 

the OGC specification of the Web Processing Service. It also offers a simple framework 

to implement own processes using the programming language Python.  
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4.3.1 System design and components 

The obvious idea to integrate the introduced approaches into a service-oriented 

architecture is to implement a PyWPS process for each algorithm. This would be easy 

but is practically not realizable. A web service in general can receive data from a client 

via HTTP. The transfer speed typically depends on the internet connection of the client. 

In this work we deal with data sizes between 35 and 1204 MB which have to be 

uploaded to the web service for every client request. Therefore, a simple XML-RPC 

server is implemented which communicates with the PyWPS via HTTP (see XML-RPC, 

2010). Figure 27 shows the system design in a schematic diagram. In the following the 

different system components and their functionality are described in detail.  

 

 
Fig. 27: Schematic diagram of the system design. 

 

The client can interact with the WPS exclusively as the components behind the WPS 

are not accessible. In this case the client can be any type of application that can 

establish a connection to the World Wide Web as well any other service in an existing 
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service-oriented architecture that uses the functionality of this web service. The 

interoperability of all those different clients with the WPS is assured by the 

standardized interface of the WPS.   

The WPS provides four operations with which the two different data structures can be 

created and the visibility on those can be analyzed. In figure 28 one can see the 

detailed functionality of those processes.  

The input parameters of the two creation processes are the .shp and .shx file of the 

TIN. These files can be directly uploaded by the client via HTTP or can be downloaded 

by the WPS from another web server. After the input files are correctly transferred the 

processes create the respective data structure (see chapters 4.2.2 and 4.3.2) and save 

it to the data system of the web server. Afterwards it calls the server to load the data 

set and provide it under a random generated number. This ID-number of this user 

specific data set is then set as the return value of the processes. This data can be 

accessed with the two visibility processes of the WPS. These processes require the 

coordinates of the target and the observer as well as the ID of the previous generated 

data set. In addition the R-tree process needs the step size and the overlapping factor 

as input parameters. The processes then call the server to analyze the visibility 

according to the introduced approaches and finally return a simple “yes” or “no”.   

 

 
Fig. 28: The four WPS processes in detail. 

 

The server is implemented using the standard Python module SimpleXMLRPCServer 

with which a program can be created that listens on a specific port and waits for 
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incoming requests. As mentioned before these requests can be exclusively sent by the 

WPS. 

According to the WPS processes, the server provides four functions (Figure 27). The 

two loading functions receive the ID-number from the WPS and read the data out of 

the data system into local variables which therefore saves the data into the RAM of the 

web server. Thus the data is available while the server is running and can be accessed 

without reloading. If a client then wants to analyze the visibility, the data is already 

available and the analysis can start directly. The two visibility functions contain the 

presented visibility algorithms (see chapter 4.2.3 and 4.3.3). Hence, the actual visibility 

calculation is sourced out of the WPS into the server. This offers the possibility to 

simply replace the server component of the system with an implementation in a more 

efficient programming language than Python like C or C++.   
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5 Results and Discussion 
In this chapter the two visibility algorithms are compared in calculation time and 

memory requirements to decide which one is more efficient. These parameters are 

determined by testing the algorithms on the given data sets. The calculation times of 

the traditional approach on raster data (see Tab. 1) are other benchmarks to which the 

upcoming performance results are compared.  

The test data for the analyses are 52 observer-target pairs, which are randomly placed 

in the study area. Figure 29 shows the location of the observers (blue) and the targets 

(red) in which neighboring points are not necessarily building a pair. The distance 

between the pairs varies between 47.69 and 5899.96 meters whereas the most pairs 

(ca. 65%) are within 500 meters distance as this is probably the most common distance 

for applications in urban areas. 

For the upcoming performance tests the algorithms were tested on a 4x Dual Xeon 

2.93 GHz with 256 GB RAM to handle the large data volume. 

 
Fig. 29: The test data with 52 observer-target pairs. Blue: observer; Red: target. 



Chapter 5 - Results and Discussion 
  

41 

5.1 Creation of the data structure 

As mentioned in the chapter 4.1 and 4.2, the first step before analyzing the visibility is 

to transform the TINs into the appropriate data structure. Therefore, the creation time 

was logged and the creation process for both approaches was repeated 10 times. In 

the following comparison the median of the calculation times was preferred as it is not 

prone to outliers in contrast to the arithmetic mean. Those outliers can be the result of 

background processes on the testing machine which are affecting the normal 

calculation time. Table 3 shows the median of the calculation times and the total data 

size of the R-tree and the topological data structure for the different TINs.  

 

 R-tree Topological data structure 

Name Calculation time 
[sec] 

Total data size 
[MB] 

Calculation time 
[sec] 

Total data size 
[MB] 

TIN15 134.54 (2.61%)  134 (2.89%)  65.06 (0.49%)  39.5 (2.85%)  

TIN10 436.19 (8.46%) 431 (9.30%)  264.78 (2.01%)  125 (9.03%)  

TIN8 711.66 (13.81%) 679 (14.65%)  532.79 (4.05%)  197 (14.23%)  

TIN2 5150.24 (100.00%) 4633 (100.00%) 13125.65 (100.00%) 1384 (100.00%) 

Tab. 3: Calculation time and the total data size of the R-tree and the topological data 

structure for the different TINs (the percentages refer to the largest value in the 

respective column). 

 

It is obvious that both parameters increase due to the rising resolution of the TINs. 

However, it seems that the calculation time of the R-tree and the topological approach 

proceed differently as the calculation of the topological data structure is faster for 

TIN15, TIN10 and TIN8 but vastly increases for TIN2. This assumption is verified by the 

scatter plots shown in figure 30 between the number of triangles of the TIN and the 

calculation time. As one can see the calculation time of the topological data structure 

first increases slightly while the calculation time rises up according to the increased 

number of triangles. On the other hand, the calculation time of the R-tree seems to 

increase almost linearly. The total data size of both approaches increases linearly 



Chapter 5 - Results and Discussion 
  

42 

(Fig. 31) whereas the R-tree uses over 3 times more disk space than the topological 

data structure because it saves each edge of the triangles.   

 

    
Fig. 30: Scatter plots between the number of triangles and the calculation time for the 

R-tree (a) and the topological data structure (b). 

 

    
Fig. 31: Scatter plots between the number of triangles and the total data size of the    

R-tree (a) and the topological data structure (b).  

 

This leads to the conclusion that the topological data structure can be created faster 

for low resolution TINs as the R-tree is more efficient for a higher resolution. The 

disadvantage of the topological approach on high-resolution TINs is mainly due to the 

use of an R-tree windows query during its generation process. The computation time 

of this spatial query increases according to the number of triangles that has to be 

(a) (b) 

(a) (b) 
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checked. In consideration of the memory requirements, the topological data structure 

is more efficient as it uses around one-third disk space compared to the R-tree. 

5.2 Visibility analysis 

To evaluate the visibility algorithms a test program was written which directly calls the 

visibility functions on the server and records the calculation times. This process is 

repeated 50 times for every observer-target pair on every available TIN. Afterwards 

these recorded times were processed into the following statistical parameters: 

• Arithmetic mean 

• Minimum value 

• Maximum value 

• Median 

• Standard deviation 

Also included in the following evaluation process is the length of the LOS as well as the 

number of triangles crossed by the LOS. 

 

TIN Parameter Minimum Maximum Mean 

TIN15 
Standard deviation (R-tree) 0.00016 0.3148 0.1101 

Standard deviation (topological) 0.00003 0.1303 0.0203 

TIN10 
Standard deviation (R-tree) 0.00021 0.9479 0.3910 

Standard deviation (topological) 0.00010 0.4902 0.1056 

TIN8 
Standard deviation (R-tree) 0.00024 1.3671 0.6171 

Standard deviation (topological) 0.00005 0.8878 0.2028 

TIN2 
Standard deviation (R-tree) 0.01491 6.9087 5.1916 

Standard deviation (topological) 0.00031 6.8588 2.4262 

Tab. 4: Descriptive statistics of the standard deviations of the computation times on 

the different TINs. 

 

As mentioned in the previous chapter 5.2 the calculation time on the testing machine 

might be affected by background processes. The longer the actual calculation will take, 

the higher is the possibility that a background process affects it. The descriptive 
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statistics of the standard deviations support this assumption as the maximum and the 

mean of the standard deviation on TIN2 vastly increases (see Tab. 4). Based on this fact 

the standard parameter used to analyze the calculation time might vary between the 

median, the minimum and the mean as some test series are highly affected by 

background processes while other series are not. 

5.2.1 Comparison of the two visibility approaches 

Based on the different ideas of the two approaches, the calculation times depend on 

different parameters. The R-tree algorithm mainly depends on the distance between 

the observer and the target as it has to parse the LOS (Fig. 32).  

 

    

    
Fig. 32: Scatter plots between the distance from the observer to the target and the 

mean calculation time of the R-tree on TIN15 (a), TIN10 (b), TIN8 (c) and TIN2 (d). 

 

(a) (b) 

(c) (d) 
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The algorithm based on the topological data structure mainly depends on the number 

of crossed triangles by the LOS as its logic is based on exactly these triangles. The 

dependency is almost perfectly linear for every available TIN resolution (Fig. 33).  

 

    

    

Fig. 33: Scatter plots between the number of crossed triangles by the LOS and the 

mean calculation time of the topological data structure on TIN15 (a), TIN10 (b), 

TIN8 (c) and TIN2 (d). 

 

This approach seems to depend on the distance as well (Fig. 34), but the distance and 

the number of crossed triangles are highly correlated among each other. In 

consideration of the idea behind the algorithm the dependency on the distance 

between the observer and the target is not logical. If one assumes an arbitrary LOS 

intersects five triangles, then it does not matter how large these triangles are and how 

large the distance of the LOS is. Compared to the R-tree approach this is an enormous 

(a) (b) 

(c) (d) 
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advantage as the topological algorithm do not need any settings (like step size and 

overlapping factor for the R-tree) to work efficiently on any contrivable TIN resolution. 

The R-tree algorithm has to be adjusted to work efficiently on a higher or a 

considerable lower TIN resolution. 

 

    

    
Fig. 34: Scatter plots between the distance from the observer to the target and the 

mean calculation time of the topological data structure on TIN15 (a), TIN10 (b),  

TIN8 (c) and TIN2 (d). 

 

In a nutshell the dependencies of the two approaches reveal some weaknesses of the 

R-tree visibility algorithm. The rectangular window query might always involve triangle 

edges that are not intersected by the line-of-sight but have to be checked for 

intersection. The computing time for this is comparatively low but still increases due to 

(a) 

(d) (c) 

(b) 
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the TIN resolution. Adding the high number of R-tree queries by parsing the LOS, the 

total calculation time especially for TINs with higher resolutions increases significantly. 

In contrast, the topological approach generates as little calculations as possible and is 

therefore faster on every available TIN. Table 5 shows the descriptive statistics of the 

mean visibility calculation times on the R-tree and on the topological data structure. It 

is obvious that the topological approach outperforms the R-tree on every available 

TIN. For TIN2 the calculation in the mean is almost 10 times faster. 

 

 R-Tree Topological data structure 

TIN Minimum Maximum Mean Minimum Maximum Mean 

TIN15 0.0079 1.7904 0.2195 0.0024 0.5579 0.0695 

TIN10 0.0105 4.3966 0.5557 0.0021 1.1163 0.1522 

TIN8 0.0149 7.4529 0.9157 0.0034 1.6491 0.2185 

TIN2 0.2980 150.2021 15.7479 0.0069 13.2951 1.6332 

Tab. 5: Descriptive statistics of the mean visibility calculation times on the R-tree and 

on the topological data structure. 

 

These results are not expected as the topological data structure highly differs from the 

specification in the literature. Typically the three primitives are saved separately to 

avoid redundancy. One attempt to transform the TINs strictly into this data structure 

was discarded due to enormous computational complexity. To save for example one 

new point to the point data structure, the whole array has to be checked for 

redundancy before the point can finally be added. This results in a total calculation 

time for the smallest TIN (TIN15) of around 22 hours. It turned out that the best theory 

not necessarily is the best model for a practical realization.  
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5.3 The SOA-conform system 

This chapter demonstrates the functionalities of the developed system in particular 

using the example of the topological approach and shows the potential by including 

some advanced processes. Before the system can be used, the server has to be 

initialized: 

python serverVisibility.py <DATAFOLDER> 

During the initialization the server reads all previous saved data from the given data 

folder. In that way the server also works correctly after a system crash or a system 

reboot. The output of the server can be written to a log file or directly examined in the 

console.  

Once the server has started correctly, the WPS can send requests over HTTP. PyWPS 

processes can be executed using a web browser or directly on the command line:  

wps.py "service=wps&version=1.0.0&request=getCapabilities" 

With the previous command the capabilities of the WPS are listed, which among 

others contain the names of the available processes as well as some metadata about 

them:  

<wps:ProcessOfferings> 
  <wps:Process wps:processVersion="1.0"> 
   <ows:Identifier>createTopoData</ows:Identifier> 
   <ows:Title>Create topological datastructure</ows:Title> 
   <ows:Abstract>[…]</ows:Abstract> 
  </wps:Process> 
  <wps:Process wps:processVersion="1.0"> 
   <ows:Identifier>createRTree</ows:Identifier> 
   <ows:Title>Create R-tree</ows:Title> 
   <ows:Abstract>[…]</ows:Abstract> 
  </wps:Process> 
  <wps:Process wps:processVersion="1.0"> 
   <ows:Identifier>visTopo</ows:Identifier> 
   <ows:Title>Visibility on the topological data                  
                   </ows:Title> 
   <ows:Abstract>[…]</ows:Abstract> 
  </wps:Process> 
  <wps:Process wps:processVersion="1.0"> 
   <ows:Identifier>visRTree</ows:Identifier> 
   <ows:Title>Visibility on R-tree</ows:Title> 
   <ows:Abstract>[…]</ows:Abstract> 
  </wps:Process> 
        […] 
 </wps:ProcessOfferings> 
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Before a process is executed, it is advisable to check the detailed metadata and to 

regard the required input parameters. These details can be derived by the 

“DescribeProcess” command:  

wps.py "service=wps&version=1.0.0&request=describeProcess&  
             identifier=createTopoData" 
 
        […] 
        <ows:Identifier>createTopoData</ows:Identifier> 
        […] 
        <DataInputs> 
            <Input minOccurs="1" maxOccurs="1"> 
                <ows:Identifier>tinShp</ows:Identifier> 
                <ows:Title>Path to shp file of the TIN</ows:Title> 
                <ows:Abstract>Path to shp file of the TIN</ows:Abstract> 
                <ComplexData> 
                    […] 
                </ComplexData> 
            </Input> 
            […] 
        </DataInputs> 

Afterwards the WPS process “createTopoData” to create the topological data structure 

can be called. In this case the input data was previously uploaded to another web 

server and is automatically downloaded to a temporary folder on the data system:  

wps.py "service=wps&version=1.0.0&request=execute& 
        identifier=createTopoData&datainputs= 
        tinShp=http://www.florianhillen.de/rastertin_tol15_subset.shp; 
        tinShx=http://www.florianhillen.de/rastertin_tol15_subset.shx" 
 
PyWPS Status [processpaused]: Getting input tinShx of process 
createTopoData 
PyWPS Status [processpaused]: Getting input tinShp of process 
createTopoData 
PyWPS Status [processstarted][0.0]: Process createTopoData started 
[…] 
<wps:ProcessOutputs> 
     <wps:Output> 
          <ows:Identifier>id</ows:Identifier> 
          <ows:Title>ID of topological data</ows:Title> 
          <wps:Data> 
              <wps:LiteralData dataType="integer"> 
                  548904 
              </wps:LiteralData> 
          </wps:Data> 
     </wps:Output> 
</wps:ProcessOutputs> 

The resulting data structure is directly saved by the process to the predefined data 

folder. The process then calls the server to load this data structure to the RAM using 

an arbitrary ID-number. This number, in this example 548904, is set as the return value 
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of the WPS process and is delivered to the client. Afterwards the client can run the 

corresponding visibility analysis on its specific data set using the ID-number. The result 

is returned in the XML format and in this case the given target is visible from the 

defined observer:  

wps.py "service=wps&version=1.0.0&request=execute&identifier=visTopo& 
        datainputs=observer_x=3434931.5;observer_y=5794119.2; 
        observer_z=62;target_x=3434958.3;target_y=5794190.6; 
        target_z=82;id=548904" 
 
<wps:ProcessOutputs> 
     <wps:Output> 
         <ows:Identifier>visible</ows:Identifier> 
         <ows:Title>Visibility of the target</ows:Title> 
         <wps:Data> 
             <wps:LiteralData dataType="integer">yes</wps:LiteralData> 
         </wps:Data> 
     </wps:Output> 
</wps:ProcessOutputs> 

The potential of the WPS in combination with the server is large. For example a WPS 

process can import given GML (Geography Markup Language) files that includes many 

observers and targets to start multiple visibility analyses. The result contains the 

visibility of every observer-target pair:  

wps.py "service=wps&version=1.0.0&request=execute& 
        identifier=multiVisTopoGML&datainputs= 
        observers=http://www.florianhillen.de/observer.gml; 
        targets=http://www.florianhillen.de/target.gml;id=548904" 
 
<wps:ProcessOutputs> 
     <wps:Output> 
         <ows:Identifier>visible</ows:Identifier> 
         <ows:Title>Visibility of the targets</ows:Title> 
         <wps:Data> 
             <wps:LiteralData dataType="integer"> 
                 <los id=1><visible>no</visible></los> 
                 <los id=2><visible>no</visible></los> 
                 <los id=3><visible>yes</visible></los> 
                 <los id=4><visible>yes</visible></los> 
              </wps:LiteralData> 
            </wps:Data> 
         </wps:Data> 
     </wps:Output> 
</wps:ProcessOutputs> 

The basic functionality of the server can therefore be used to create more complex 

requests. Over the standardized interface of the WPS the system can be included in 

any implemented service-oriented architecture. The functionality can be as well used 

in geographical information systems (GIS) that support a connection to a WPS.   
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6 Conclusion 
In this work two approaches to calculate the visibility on triangulated irregular 

networks have been proposed and successfully integrated into a service-oriented 

architecture. First of all, one has to say that it is possible to provide visibility analysis on 

laser data at the push of a button. This means that it succeeds to bring high accurate 

visibility queries together with a low calculation time which is important for location 

based services and many other geospatial applications. 

Based on the concluding evaluation the following research statements can be made:  

• It can be concluded that both approaches in general are much faster than the 

traditional calculation of visibility based on raster data and that the TIN is a 

good alternative data model for terrain analyses. Though it needs more 

preliminary processing effort as the most elevation data is delivered in raster 

format. 

• The R-tree delivers a data structure that easily organizes the triangles without 

any large preprocessing effort and a linear creation time. The general idea of 

parsing the line-of-sight is attended by the fact that the algorithm might be “out 

of work” for certain regions (for example large triangles parsed with a low step 

size) or has to check too many inconclusive triangles (many triangle edges within 

one R-tree query). This creates a calculation overhead for almost any possible 

TIN resolution. 

• The general topological data structure as proposed in the literature is not 

capable for a high number of triangles. A related but simpler data structure is 

therefore used in this work. After improving the creation process using the R-

tree, the data structure is generated faster than the R-tree for low resolution 

TINs. Though the R-tree creation is faster on higher TIN resolutions because the 

spatial query during the topological generation process delivers more triangle 

edges which have to be analyzed according to the increased resolution. 

Furthermore, this approach needs around one-third less disk space compared to 

the R-tree. 
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• The visibility analysis on the topological data structure overshoots all 

expectations. The algorithm outperforms the R-tree approach on every available 

TIN resolution. On the largest examined TIN the calculation is in the mean 

almost 10 times faster than the calculation based on the R-tree (see Tab. 5). The 

high performance of this approach mainly depends on the fast navigation 

through the triangles based on the topological data structure which makes the 

parsing of the line-of-sight unnecessary. Thus, the algorithm almost entirely 

avoids the usage of spatial queries which are very time-consuming especially on 

large data sets. Another advantage is the minimized number of calculations to 

solve the visibility problem as only the actual intersected edges are processed 

by the algorithm. 

• The integration of the approaches into a service-oriented architecture revealed 

some issues with the high data size of the input data. As it is not capable for the 

client to upload the TIN for every visibility request, a server was implemented to 

provide the user specific data sets. This extension of the system allows the WPS 

processes to quickly access the requested user data. The computational 

overhead which naturally results using a web service is thereby as low as 

possible. 

 

From the previous research findings the following future prospects can be derived: 

• One potential future work is to improve the visibility approaches using multi-

core processors and multi-threading programming techniques. The R-tree 

approach can be enhanced by dividing the LOS and parsing the single parts 

simultaneously. This will reduce the calculation time according to the number of 

used processor cores. For the topological approach the TIN can be additionally 

passed through backwards. This means that two initial triangles, the ones 

surrounding the observer and the target point, has to be determined and will be 

used as the starting point for two simultaneous threads.  

• Another improvement of the calculation speed might be the implementation of 

the system’s server component in a more efficient programming language like C 

or C++ as described in chapter 4.4.2.  
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• Many approaches can be found by extending the developed SOA-conform 

system. The possibility to import data from a Web Feature Service into a WPS 

process will make it easier for the client to transfer his data. The output data can 

be modified as well by returning a geometry representing the visible part of the 

LOS for instance. 

• Apart from that the topological approach can be used to solve other visibility 

problems with a higher dimension like the viewshed analysis. Starting with the 

initial triangle, the neighboring triangles within a defined radius can be 

incrementally checked for visibility to calculate the viewshed of a given 

observer. The R-tree approach can also be extended for this kind of problem as 

a window query around the observer point delivers the neighboring triangles as 

well. 

• One disadvantage of the current service is the missing metadata of the available 

data on the server. If the user lost its ID-number, the specific data set cannot be 

queried anymore. The OGC Catalogue Service (CSW) could be used to create a 

metadata catalogue that is automatically filled once the client uploads new data 

to the server. Apart from the ID-number, the extent, the underlying coordinate 

system and the resolution of the data set can be saved as metadata. Thus, a 

possible other users receive an overview of the existing data and might reuse 

previously uploaded data sets. Another use-case of this extended system is that 

a location based service directly can determine an adequate data set and can 

request the demanded visibility query on it based on the current geographical 

position of the mobile device as well as the needed data resolution.  
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Appendix 

A Source code examples 

Source code of the XML-RPC server: 

#! /usr/bin/python26 
 
__author__="florian" 
__date__ ="$16.03.2011 17:03:28$" 
 
from SimpleXMLRPCServer import SimpleXMLRPCServer 
from rtree import Rtree 
from shapely.geometry import Point 
from shapely.geometry import LineString 
from shapely.geometry import Polygon 
import cPickle 
import os 
import sys 
 
class Lookup(dict): 
    """ 
    a dictionary which can lookup value by key, or keys by value 
    """ 
    def __init__(self, items=[]): 
        """items can be a list of pair_lists or a dictionary""" 
        dict.__init__(self, items) 
 
    def get_key(self, value): 
        """find the key(s) as a list given a value""" 
        for item in self.items(): 
            if item[1] == value: 
                return item[0] 
        return "" 
 
    def get_value(self, key): 
        """find the value given a key""" 
        return self[key] 
 
class DataTopo: 
    t = {} 
    triangles = Lookup(t) 
    n = {} 
    neighbors = Lookup(n) 
    idx = "" 
    id = "" 
    fileRoot = "" 
 
    def __init__(self, id, fileRoot): 
        print "             - initialising topo Data" 
        self.id = id 
        self.fileRoot = fileRoot 
        print "                   *done*" 



Appendix 
  

63 

 
    # load topological data 
    def loadData(self): 
        fileTriangles = self.fileRoot+"topoTriangles_%s.pkl" % self.id 
        fileNeighbors = self.fileRoot+"topoNeighbors_%s.pkl" % self.id 
        fileRTree = self.fileRoot+"topoRTree_%s" % self.id 
 
        print "             - now loading Triangles" 
        input = open(fileTriangles, 'rb') 
        self.triangles = cPickle.load(input) 
        input.close() 
        print "                   *done*" 
 
        print "             - now loading Neighbors" 
        input = open(fileNeighbors, 'rb') 
        self.neighbors = cPickle.load(input) 
        input.close() 
        print "                   *done*" 
 
        print "             - now loading RTree" 
        self.idx = Rtree(fileRTree) 
        print "                   *done*" 
 
    def getSlopeXZ(self, observer, target): 
        deltaZ = observer.z-target.z 
        deltaX = observer.x-target.x 
        if deltaX == 0: 
            print "deltaX == 0" 
        else: 
            slope = deltaZ/deltaX 
        return slope 
 
    # get crossed triangles 
    def crossedTrianglesVis(self, observer, los, slope, t, last, counter): 
        # create the three triangle lines 
        line1 = LineString(((self.triangles[t][0][0],  
                    self.triangles[t][0][1], self.triangles[t][0][2]), 
                          (self.triangles[t][1][0],    
                    self.triangles[t][1][1], self.triangles[t][1][2]))) 
        line2 = LineString(((self.triangles[t][1][0], 
                    self.triangles[t][1][1], self.triangles[t][1][2]), 
                          (self.triangles[t][2][0],  
                    self.triangles[t][2][1], self.triangles[t][2][2]))) 
        line3 = LineString(((self.triangles[t][2][0], 
                    self.triangles[t][2][1], self.triangles[t][2][2]), 
                          (self.triangles[t][0][0],  
                    self.triangles[t][0][1], self.triangles[t][0][2]))) 
 
        # check which line is intersected by the LOS and set the next  
          triangle 
        intersection = Point() 
        intersectionLine = LineString() 
        i1 = los.intersection(line1) 
        if i1.wkt != "GEOMETRYCOLLECTION EMPTY": 
            if self.neighbors[t][0] != last: 
                intersection = i1 
                intersectionLine = line1 
                n = self.neighbors[t][0] 
        i2 = los.intersection(line2) 
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        if i2.wkt != "GEOMETRYCOLLECTION EMPTY": 
            if self.neighbors[t][1] != last: 
                intersection = i2 
                intersectionLine = line2 
                n = self.neighbors[t][1] 
        i3 = los.intersection(line3) 
        if i3.wkt != "GEOMETRYCOLLECTION EMPTY": 
            if self.neighbors[t][2] != last: 
                intersection = i3 
                intersectionLine = line3 
                n = self.neighbors[t][2] 
 
        # if no intersection found so far, the last triangle is reached and  
          the target is visible 
        if intersection.wkt == "GEOMETRYCOLLECTION EMPTY": 
            return counter 
 
        # interpolate the height with the two points of the line 
        positionVector = intersectionLine.coords[0] 
        directionVector = (intersectionLine.coords[1][0] – 
                               positionVector[0], 
                           intersectionLine.coords[1][1] – 
                               positionVector[1], 
                           intersectionLine.coords[1][2] – 
                               positionVector[2]) 
        if directionVector[0] == 0: 
            lambdaLine = 0 
        else: 
            lambdaLine = (intersection.x - positionVector[0]) / 
                               directionVector[0] 
        intersectionHeight = positionVector[2] + lambdaLine * 
                               directionVector[2] 
        intersection = Point(intersection.x, intersection.y, 
                             intersectionHeight) 
 
        # calculate angle between observer and intersection point in xz- 
          plane 
        slopeIntersection = self.getSlopeXZ(observer, intersection) 
 
        # angle of LOS must be higher than angle of observer-intersection 
        if slope < slopeIntersection: 
            return counter 
        else: 
            counter += 1 
            return self.crossedTrianglesVis(observer, los, slope, n, t, 
                                            counter) 
 
    # Analyses the visibility between observer and target 
    def analyseVisibility(self, observer, los, slope, t, last): 
        # create the three triangle lines 
        line1 = LineString(((self.triangles[t][0][0], 
                    self.triangles[t][0][1], self.triangles[t][0][2]), 
                            (self.triangles[t][1][0], 
                    self.triangles[t][1][1], self.triangles[t][1][2]))) 
        line2 = LineString(((self.triangles[t][1][0], 
                    self.triangles[t][1][1], self.triangles[t][1][2]), 
                            (self.triangles[t][2][0],  
                    self.triangles[t][2][1], self.triangles[t][2][2]))) 
        line3 = LineString(((self.triangles[t][2][0], 
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                    self.triangles[t][2][1], self.triangles[t][2][2]), 
                            (self.triangles[t][0][0], 
                    self.triangles[t][0][1], self.triangles[t][0][2]))) 
 
        # check which line is intersected by the LOS and set the next  
          triangle 
        intersection = Point() 
        intersectionLine = LineString() 
        i1 = los.intersection(line1) 
        if i1.wkt != "GEOMETRYCOLLECTION EMPTY": 
            if self.neighbors[t][0] != last: 
                intersection = i1 
                intersectionLine = line1 
                n = self.neighbors[t][0] 
        i2 = los.intersection(line2) 
        if i2.wkt != "GEOMETRYCOLLECTION EMPTY": 
            if self.neighbors[t][1] != last: 
                intersection = i2 
                intersectionLine = line2 
                n = self.neighbors[t][1] 
        i3 = los.intersection(line3) 
        if i3.wkt != "GEOMETRYCOLLECTION EMPTY": 
            if self.neighbors[t][2] != last: 
                intersection = i3 
                intersectionLine = line3 
                n = self.neighbors[t][2] 
 
        # if no intersection found so far, the last triangle is reached and  
          the target is visible 
        if intersection.wkt == "GEOMETRYCOLLECTION EMPTY": 
            return True 
 
        # interpolate the height with the two points of the line 
        positionVector = intersectionLine.coords[0] 
        directionVector = (intersectionLine.coords[1][0] –  
                    positionVector[0], 
                            intersectionLine.coords[1][1] – 
                    positionVector[1], 
                            intersectionLine.coords[1][2] –  
                    positionVector[2]) 
        if directionVector[0] == 0: 
            lambdaLine = 0 
        else: 
            lambdaLine = (intersection.x - positionVector[0]) / 
                     directionVector[0] 
        intersectionHeight = positionVector[2] + lambdaLine * 
                     directionVector[2] 
        intersection = Point(intersection.x, intersection.y, 
                     intersectionHeight) 
 
        # calculate angle between observer and intersection point in xz- 
          plane 
        slopeIntersection = self.getSlopeXZ(observer, intersection) 
 
        # angle of LOS must be higher than angle of observer-intersection 
        if slope < slopeIntersection: 
            return False 
        else: 
            return self.analyseVisibility(observer, los, slope, n, t) 
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    # find initial triangle in the r-tree 
    def getInitialTriangle(self, observer): 
        hits = self.idx.nearest((observer.x, observer.y, observer.x, 
                                 observer.y)) 
 
        for h in hits: 
            t = self.triangles[h] 
 
            poly = Polygon(((float(t[0][0]), float(t[0][1]), 
                     float(t[0][2])), 
                            (float(t[1][0]), float(t[1][1]), 
                     float(t[1][1])), 
                            (float(t[2][0]), float(t[2][1]), 
                     float(t[2][1])), 
                            (float(t[0][0]), float(t[0][1]), 
                     float(t[0][1])))) 
 
            if observer.within(poly): 
                return h 
 
        return False 
 
class DataRTree: 
    idx = {} 
    id = "" 
    fileRoot = "" 
 
    def __init__(self, id, fileRoot): 
        self.id = id 
        self.fileRoot = fileRoot 
 
    # load r-tree 
    def loadData(self, ): 
        fileRTree = self.fileRoot+"RTree_%s" % self.id 
        self.idx = Rtree(fileRTree) 
 
    # Calculate slope of LOS 
    def getSlope(self, observer, target): 
        deltaY = observer.y-target.y 
        deltaX = observer.x-target.x 
        if deltaX == 0: 
            print "deltaX == 0" 
        else: 
            slope = deltaY/deltaX 
        return slope 
 
    # Detects the possible lines in the given bbox 
    def detectPossibleLines(self, xMin,yMin,xMax,yMax): 
        # check if minima and maxima are correct 
        if xMin > xMax: 
            temp = xMin 
            xMin = xMax 
            xMax = temp 
        if yMin > yMax: 
            temp = yMin 
            yMin = yMax 
            yMax = temp 
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        possibleLines = {} 
        # determine possible lines from r-tree 
        hits = self.idx.intersection((xMin,yMin,xMax,yMax), objects=True) 
        for h in hits: 
            possibleLines[(h.bbox[0],h.bbox[1],h.bbox[2],h.bbox[3])] = 
                     h.object 
        return possibleLines 
 
    # Parsing the line of sight in the given step size with the defined  
      overlap factor 
    def parseLOS(self, observer, target, los, step, factor): 
        # Calculate slope of LOS 
        slope = self.getSlope(observer, target) 
 
        # Start at observer position 
        xStart = observer.x 
        yStart = observer.y 
 
        possibleLines = {} 
 
        finished = 0 
        # if the slope is below 1, increase X 
        if abs(slope) <= 1: 
            # do until target is reached 
            while finished == 0: 
                # lines from right to left 
                if observer.x > target.x: 
                    xEnd = xStart - step 
                    yEnd = yStart - (step * slope) 
                    xNewStart = xStart - (step * factor) 
                    yNewStart = yStart - (step * slope * factor) 
                    if xEnd <= target.x: 
                        xEnd = target.x 
                        yEnd = target.y 
                        finished = 1 
                # lines from left to right 
                else: 
                    xEnd = xStart + step 
                    yEnd = yStart + (step * slope) 
                    xNewStart = xStart + (step * factor) 
                    yNewStart = yStart + (step * slope * factor) 
                    if xEnd >= target.x: 
                        xEnd = target.x 
                        yEnd = target.y 
                        finished = 1 
 
                possibleLines = self.detectPossibleLines(xStart,yStart 
                                                         ,xEnd,yEnd) 
                visible = self.analyseVisibility(observer, target, los, 
                                         possibleLines) 
                if visible == False: 
                    return False 
 
                xStart = xNewStart 
                yStart = yNewStart 
        # if the slope is above 1, increase Y 
        else: 
            # do until target is reached 
            while finished == 0: 
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                # lines from top to bottom 
                if observer.y > target.y: 
                    yEnd = yStart - step 
                    xEnd = xStart - (step * (1/slope)) 
                    yNewStart = yStart - (step * factor) 
                    xNewStart = xStart - (step * (1/slope) * factor) 
                    if yEnd <= target.y: 
                        yEnd = target.y 
                        xEnd = target.x 
                        finished = 1 
                # lines from bottom to top 
                else: 
                    yEnd = yStart + step 
                    xEnd = xStart + (step * (1/slope)) 
                    yNewStart = yStart + (step * factor) 
                    xNewStart = xStart + (step * (1/slope) * factor) 
                    if yEnd >= target.y: 
                        yEnd = target.y 
                        xEnd = target.x 
                        finished = 1 
 
                possibleLines = self.detectPossibleLines(xStart,yStart 
                                                         ,xEnd,yEnd) 
                visible = self.analyseVisibility(observer, target, los,  
                                                 possibleLines) 
                if visible == False: 
                    return False 
 
                xStart = xNewStart 
                yStart = yNewStart 
 
        return True 
 
    def getSlopeXZ(self, observer, target): 
        deltaZ = observer.z-target.z 
        deltaX = observer.x-target.x 
        if deltaX == 0: 
            print "deltaX == 0" 
        else: 
            slope = deltaZ/deltaX 
        return slope 
 
    # Analyses the visibility between observer and target 
    def analyseVisibility(self, observer, target, los, possibleLines): 
        # calculate the angle of the LOS 
        slope = self.getSlopeXZ(observer, target) 
 
        # calculate intersection points with LOS 
        for possibleLine in possibleLines.values(): 
            intersection = Point() 
            possibleLine = LineString(((possibleLine.GetPoint(0)[0], 
               possibleLine.GetPoint(0)[1], possibleLine.GetPoint(0)[2]), 
                                       (possibleLine.GetPoint(1)[0],  
               possibleLine.GetPoint(1)[1], possibleLine.GetPoint(1)[2]))) 
            intersection = los.intersection(possibleLine) 
            if intersection.wkt == "GEOMETRYCOLLECTION EMPTY": 
                continue 
 
            # interpolate the height from the 2 points of the line 
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            positionVector = possibleLine.coords[0] 
            directionVector = (possibleLine.coords[1][0] – 
                    positionVector[0], 
                                possibleLine.coords[1][1] –  
                    positionVector[1], 
                                possibleLine.coords[1][2] –  
                    positionVector[2]) 
            if directionVector[0] == 0: 
                lambdaLine = 0 
            else: 
                lambdaLine = (intersection.x - positionVector[0]) /  
                    directionVector[0] 
            intersectionHeight = positionVector[2] + lambdaLine *  
                    directionVector[2] 
            intersection = Point(intersection.x, intersection.y,  
                    intersectionHeight) 
 
            # calculate angle between observer and intersection point in  
              xz-plane 
            slopeIntersection = self.getSlopeXZ(observer, intersection) 
 
            # angle of LOS must be higher than angle of observer- 
              intersection 
            if slope < slopeIntersection: 
                return False 
 
        return True 
 
class Request: 
    topoData = {} 
    rtreeData = {} 
    fileRoot = "" 
 
    def __init__(self, fileRoot): 
        sys.setrecursionlimit(100000) 
        self.fileRoot = fileRoot 
 
        print "Loading data from given directory %s ..." % fileRoot 
 
        # Lade alle Daten aus fileRoot 
        for file in os.listdir(fileRoot): 
            ##print file.__str__().split("topoNeighbors_").split(".pkl")[0] 
            beginning = file.__str__().split("_")[0] 
            end = file.__str__().split(".")[1] 
            if beginning == "topoTriangles": 
                    id = int(file.__str__().split("_")[1].split(".")[0]) 
                    print "      - now loading topological Data with ID %s" 
% id 
                    self.loadTopoData(id) 
                    print "             *done*" 
            if beginning == "RTree" and end == "dat": 
                    id = int(file.__str__().split("_")[1].split(".")[0]) 
                    print "      - now loading RTree with ID %s" % id 
                    self.loadRTree(id) 
                    print "             *done*" 
                     
        print "Finished!\n" 
 
    # load topological data 
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    def loadTopoData(self, id): 
        topo = DataTopo(id, self.fileRoot) 
        topo.loadData() 
        self.topoData[id] = topo 
 
        return "done" 
 
    # load r-tree 
    def loadRTree(self, id): 
        tree = DataRTree(id, self.fileRoot) 
        tree.loadData() 
        self.rtreeData[id] = tree 
 
        return "done" 
 
    def getCrossedTrianglesVis(self, id, observerCoords, targetCoords): 
        observer = Point(observerCoords[0], observerCoords[1], 
                     observerCoords[2]) 
        target = Point(targetCoords[0], targetCoords[1], targetCoords[2]) 
        los = LineString((observer.coords[0], target.coords[0])) 
 
        # get topological data 
        data = self.topoData[id] 
 
        # get initial triangle 
        t = data.getInitialTriangle(observer) 
 
        # calculate the angle of the LOS 
        slope = data.getSlopeXZ(observer, target) 
 
        n = data.crossedTrianglesVis(observer, los, slope, t, "", 0) 
 
        return n 
 
    def getCrossedTriangles(self, id, observerCoords, targetCoords): 
        observer = Point(observerCoords[0], observerCoords[1], 
                     observerCoords[2]) 
        target = Point(targetCoords[0], targetCoords[1], targetCoords[2]) 
        los = LineString((observer.coords[0], target.coords[0])) 
 
        # get topological data 
        data = self.topoData[id] 
 
        # get initial triangle 
        t = data.getInitialTriangle(observer) 
 
        n = data.crossedTriangles(observer, los, t, "", 0) 
        return n 
 
    # analyse visibility on topological data 
    def visTopo(self, id, observerCoords, targetCoords): 
        observer = Point(observerCoords[0], observerCoords[1], 
                     observerCoords[2]) 
        target = Point(targetCoords[0], targetCoords[1], targetCoords[2]) 
        los = LineString((observer.coords[0], target.coords[0])) 
 
        # get topological data 
        data = self.topoData[id] 
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        # get initial triangle 
        t = data.getInitialTriangle(observer) 
 
        # calculate the angle of the LOS 
        slope = data.getSlopeXZ(observer, target) 
 
        # analyse visibility 
        visible = data.analyseVisibility(observer, los, slope, t, "") 
 
        if visible: 
            return True 
        else: 
            return False 
 
    # analyse visibility on rtree 
    def visRTree(self, id, observerCoords, targetCoords, step, factor): 
        observer = Point(observerCoords[0], observerCoords[1], 
                     observerCoords[2]) 
        target = Point(targetCoords[0], targetCoords[1], targetCoords[2]) 
        los = LineString((observer.coords[0], target.coords[0])) 
         
        # get r-tree 
        data = self.rtreeData[id] 
 
        # Parse line of sight and analyse visibility 
        visible = data.parseLOS(observer, target, los, step, factor) 
 
        if visible: 
            return True 
        else: 
            return False 
 
server = SimpleXMLRPCServer(('localhost', 9000), logRequests=True) 
server.register_instance(Request(sys.argv[1])) 
#/home/florian/svn/svnhillen/entwicklung/Thesis/src/ 
#/data/studgi09/userdata/ 
 
try: 
    print "Server running ..." 
    server.serve_forever() 
except KeyboardInterrupt: 
    print "Exiting" 

 

Source code of the creation of the topological data structure: 

#! /usr/bin/python 
 
__author__="florian" 
__date__ ="$13.03.2011 14:35:24$" 
 
from osgeo import ogr 
from time import * 
from rtree import Rtree 
import cPickle 
import sys 
 
# reads the shapefile and creates the triangles 
def createTriangles(shpfile, fileTriangles): 
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    shp = ogr.Open(shpfile) 
    lyr= shp.GetLayer(0) 
    lyr.ResetReading() 
 
    print "\nCreating triangles ..." 
    start = time() 
 
    triangles = {} 
 
    iTriangles = 1 
    # save points, lines and triangles 
    for feature in lyr: 
        if iTriangles % 100000 == 0: 
            print "Status: %s triangles created" % iTriangles 
            print "     Running since: %s secs" % (time()-start) 
 
        geom = feature.GetGeometryRef() 
        wkt = geom.ExportToWkt() 
 
        parts = wkt.split("POLYGON ((") 
        parts = parts[1].split("))") 
        parts = parts[0].split(",") 
 
        # get point coords 
        coords1 = parts[0].split(" ") 
        coords2 = parts[1].split(" ") 
        coords3 = parts[2].split(" ") 
 
        # save triangle 
        triangles[iTriangles] = ((float(coords1[0]), float(coords1[1]), 
                       float(coords1[2])), 
                                 (float(coords2[0]), float(coords2[1]), 
                       float(coords2[2])), 
                                 (float(coords3[0]), float(coords3[1]), 
                       float(coords3[2]))) 
        iTriangles+=1 
 
    end = time() 
    duration = end-start 
    print "Complete! (In %f seconds)" % duration 
 
    # Saving geometries 
    print "Saving triangles ..." 
    start = time() 
 
    output = open(fileTriangles, 'wb') 
    cPickle.dump(triangles, output) 
    output.close() 
 
    end = time() 
    duration = end-start 
    print "Complete! (In %f seconds)" % duration 
 
def getEnvelope(triangle): 
    xmin = 999999999999 
    xmax = 0 
    ymin = 999999999999 
    ymax = 0 
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    for i in range(0,3): 
        if triangle[i][0] > xmax: 
            xmax = triangle[i][0] 
        if triangle[i][0] < xmin: 
            xmin = triangle[i][0] 
        if triangle[i][1] > ymax: 
            ymax = triangle[i][1] 
        if triangle[i][1] < ymin: 
            ymin = triangle[i][1] 
 
    return xmin, ymin, xmax, ymax 
 
# creates r-tree with the lines of the given tin 
def createRTree(fileTriangles, fileRTree): 
    print "\nCreating R-Tree ..." 
    start = time() 
 
    print "Reading Triangles ..." 
    input = open(fileTriangles, 'rb') 
    triangles = cPickle.load(input) 
    input.close() 
    print "     done in %s secs" % (time()-start) 
 
    idx = Rtree(fileRTree) 
 
    for i in range(1,len(triangles)+1): 
        t = triangles[i] 
        extent = getEnvelope(t) 
 
        idx.add(i, (extent[0],extent[1],extent[2],extent[3])) 
 
    end = time() 
    duration = end-start 
    print "Complete! (In %f seconds)" % duration 
 
# builds the topology of the triangles 
def createTopology(fileTriangles, fileRTree, fileNeighbors): 
    # building topology 
    print "\nBuilding topology ..." 
    start = time() 
 
    print "Reading Triangles ..." 
    input = open(fileTriangles, 'rb') 
    triangles = cPickle.load(input) 
    input.close() 
    print "     done! (%s secs)" % (time()-start) 
 
    print "Load R-Tree ..." 
    idx = Rtree(fileRTree) 
    print "     done! (%s secs)" % (time()-start) 
 
    print "Finding neighbors ..." 
    neighbors = {} 
    count = len(triangles) 
 
    # empty topology 
    for i in range(1,count+1): 
        neighbors[i] = ("", "", "") 
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    for i in range(1,count+1): 
        if i % 10000 == 0: 
            percentage = (float(i)/float(count))*100 
            print "Status: %s %s" % (percentage, "%") 
            print "     Running since: %s secs" % (time()-start) 
 
        # skip triangles whose neighbors are already defined 
        if "" not in neighbors[i]: 
            continue 
 
        extent = getEnvelope(triangles[i]) 
 
        line1 = (triangles[i][0], triangles[i][1]) 
        line2 = (triangles[i][1], triangles[i][2]) 
        line3 = (triangles[i][2], triangles[i][0]) 
 
        hits = idx.intersection((extent[0]+0.1,extent[1]+0.1, 
                       extent[2]+0.1,extent[3]+0.1)) 
        for h in hits: 
            k = h 
            v = triangles[h] 
 
            if "" not in neighbors[k]: 
                continue 
            if (line1[0] in v) and (line1[1] in v) and not(k == i): 
                neighbors[i] = (k, neighbors[i][1], neighbors[i][2]) 
                # set neighbors neighbor to self 
                if (v[0] in line1) and (v[1] in line1): 
                    neighbors[k] = (i, neighbors[k][1], neighbors[k][2]) 
                if (v[1] in line1) and (v[2] in line1): 
                    neighbors[k] = (neighbors[k][0], i, neighbors[k][2]) 
                if (v[2] in line1) and (v[0] in line1): 
                    neighbors[k] = (neighbors[k][0], neighbors[k][1], i) 
                # abort if all neighbors are found 
                if "" not in neighbors[i]: 
                    break 
            if (line2[0] in v) and (line2[1] in v) and not(k == i): 
                neighbors[i] = (neighbors[i][0], k, neighbors[i][2]) 
                # set neighbors neighbor to self 
                if (v[0] in line2) and (v[1] in line2): 
                    neighbors[k] = (i, neighbors[k][1], neighbors[k][2]) 
                if (v[1] in line2) and (v[2] in line2): 
                    neighbors[k] = (neighbors[k][0], i, neighbors[k][2]) 
                if (v[2] in line2) and (v[0] in line2): 
                    neighbors[k] = (neighbors[k][0], neighbors[k][1], i) 
                # abort if all neighbors are found 
                if "" not in neighbors[i]: 
                    break 
            if (line3[0] in v) and (line3[1] in v) and not(k == i): 
                neighbors[i] = (neighbors[i][0], neighbors[i][1], k) 
                # set neighbors neighbor to self 
                if (v[0] in line3) and (v[1] in line3): 
                    neighbors[k] = (i, neighbors[k][1], neighbors[k][2]) 
                if (v[1] in line3) and (v[2] in line3): 
                    neighbors[k] = (neighbors[k][0], i, neighbors[k][2]) 
                if (v[2] in line3) and (v[0] in line3): 
                    neighbors[k] = (neighbors[k][0], neighbors[k][1], i) 
                # abort if all neighbors are found 
                if "" not in neighbors[i]: 
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                    break 
 
    end = time() 
    duration = end-start 
    print "Complete! (In %f seconds)" % duration 
 
    # saving neighbors 
    print "Saving neighbors ..." 
    start = time() 
 
    output = open(fileNeighbors, 'wb') 
    cPickle.dump(neighbors, output) 
    output.close() 
 
    end = time() 
    duration = end-start 
    print "Complete! (In %f seconds)" % duration 
 
if __name__ == "__main__": 
    print "### Creating topological datastructure ###" 
    start = time() 
 
    print sys.argv[0] 
    if len(sys.argv) == 4: 
        shpfile = sys.argv[1] 
        fileRoot = sys.argv[2] 
        id = sys.argv[3] 
    else: 
        shpfile = "/media/Daten/Studium/- MASTER -/Thesis/Daten/ 
           Triangulierung/ArcGIS Versuche/rastertin_tol2_TinTriangle.shp" 
        #shpfile = "/media/Daten/Studium/- MASTER -/Thesis/Daten/ 
           Triangulierung/ArcGIS Versuche/rasttin_TinTriangle.shp" 
        #shpfile = "/media/Daten/Studium/- MASTER -/Thesis/Daten/ 
           Triangulierung/ArcGIS Versuche/rastertin_tol15_subset.shp" 
        fileRoot = "/home/florian/" 
        id = "1001" 
 
    fileTriangles = "%stopoTriangles_%s.pkl" % (fileRoot, id) 
    fileNeighbors = "%stopoNeighbors_%s.pkl" % (fileRoot, id) 
    fileRTree = "%stopoRTree_%s" % (fileRoot, id) 
 
    # create Datastructure 
    createTriangles(shpfile, fileTriangles) 
    createRTree(fileTriangles, fileRTree) 
    createTopology(fileTriangles, fileRTree, fileNeighbors) 
 
    end = time() 
    duration = end-start 
    print "\n### COMPLETE! (In %f seconds) ###" % duration 

 

Source code of the PyWPS process to create the R-tree data structure: 

# -*- coding: utf-8 -*- 
 
__author__="florian" 
__date__ ="$16.03.2011 13:02:15$" 
 
from pywps.Process.Process import WPSProcess 
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from osgeo import ogr 
from rtree import Rtree 
from time import * 
import xmlrpclib 
import random 
import os 
 
class Process(WPSProcess): 
 
    def __init__(self): 
        WPSProcess.__init__(self, 
 
                identifier = "createRTree", 
                title= "Create R-tree", 
                abstract = """This process creates an R-tree index 
                            needed for the visibility analysis.""", 
                version = "1.0", 
                storeSupported = True, 
                statusSupported = True) 
 
        self.tinShp = self.addComplexInput(identifier = "tinShp", 
                            title = "Path to shp file of the TIN", 
                            abstract = """Path to shp file of the TIN""", 
                            maxmegabites = 150) 
 
        self.tinShx = self.addComplexInput(identifier = "tinShx", 
                            title = "Path to shx file of the TIN", 
                            abstract = """Path to shx file of the TIN""", 
                            maxmegabites = 150) 
 
        self.id = self.addLiteralOutput(identifier = "id", 
                            title = "ID of R-tree") 
 
    # creates r-tree with the lines of the given tin 
    def createRTree (self, shpfile, filename): 
        shp = ogr.Open(shpfile) 
        lyr= shp.GetLayer(0) 
        lyr.ResetReading() 
 
        idx = Rtree(filename) 
 
        i = 0 
        for feature in lyr: 
            geom = feature.GetGeometryRef() 
            wkt = geom.ExportToWkt() 
 
            parts = wkt.split("POLYGON ((") 
            parts = parts[1].split("))") 
            parts = parts[0].split(",") 
            line1 = ogr.Geometry(ogr.wkbLineString) 
            line2 = ogr.Geometry(ogr.wkbLineString) 
            line3 = ogr.Geometry(ogr.wkbLineString) 
 
            coords = parts[0].split(" ") 
            line1.AddPoint(float(coords[0]), float(coords[1]), 
                      float(coords[2])) 
            coords = parts[1].split(" ") 
            line1.AddPoint(float(coords[0]), float(coords[1]), 
                      float(coords[2])) 
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            line2.AddPoint(float(coords[0]), float(coords[1]), 
                      float(coords[2])) 
            coords = parts[2].split(" ") 
            line2.AddPoint(float(coords[0]), float(coords[1]), 
                      float(coords[2])) 
            line3.AddPoint(float(coords[0]), float(coords[1]), 
                      float(coords[2])) 
            coords = parts[3].split(" ") 
            line3.AddPoint(float(coords[0]), float(coords[1]), 
                      float(coords[2])) 
 
            extent1 = line1.GetEnvelope() 
            extent2 = line2.GetEnvelope() 
            extent3 = line3.GetEnvelope() 
 
            idx.add(i, (extent1[0],extent1[2],extent1[1], extent1[3]), 
                      obj=line1) 
            i+=1 
            idx.add(i, (extent2[0],extent2[2],extent2[1], extent2[3]), 
                      obj=line2) 
            i+=1 
            idx.add(i, (extent3[0],extent3[2],extent3[1], extent3[3]), 
                      obj=line3) 
            i+=1 
 
    def execute(self): 
        print "### Creating R-Tree ###" 
        start = time() 
         
        fileRoot = "/data/" 
 
        # create random id and check if the id was not used before 
        id = random.randint(1, 1000000) 
        fileRTree = "RTree_%s" % id 
        while os.path.exists(fileRoot+fileRTree): 
            id = random.randint(1, 1000000) 
            fileRTree = "RTree_%s" % id 
 
        os.rename(self.tinShp.value, "./tin_%s.shp" % id) 
        os.rename(self.tinShx.value, "./tin_%s.shx" % id) 
        path = "./tin_%s.shp" % id 
 
        # create datastructure 
        self.createRTree(path, fileRoot+fileRTree) 
 
        server = xmlrpclib.ServerProxy('http://localhost:9000') 
        server.loadRTree(id) 
 
        self.id.setValue(id) 
 
        end = time() 
        duration = end-start 
        print "### Complete! (In %f seconds) ###" % duration 
 
        return 
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B Test data 

A list of the 52 observer-target pairs: 

 

ID Observer X Observer Y Observer Z Target X Target Y Target Z 
1 3434931.50 5794119.20 63.32 3434958.30 5794190.60 62.55 
2 3434840.10 5794256.80 70.48 3434967.20 5794296.60 66.59 
3 3435054.10 5794200.40 77.05 3435016.40 5794229.60 75.47 
4 3435020.00 5794136.60 67.80 3434958.30 5794197.90 62.64 
5 3435039.97 5792610.63 75.54 3434558.42 5792519.67 68.20 
6 3432712.45 5794579.66 90.25 3432990.68 5794980.96 93.36 
7 3436254.56 5793124.29 65.69 3435981.68 5793621.90 77.90 
8 3436056.59 5795055.86 72.79 3435740.90 5795446.46 77.11 
9 3436629.11 5795446.46 67.00 3436083.34 5795585.58 68.95 

10 3432712.45 5792396.60 77.56 3432530.53 5792685.54 77.19 
11 3434258.78 5793691.46 74.29 3434312.29 5794173.01 89.16 
12 3434831.30 5793472.08 64.34 3435259.35 5793755.66 66.02 
13 3432123.88 5793311.56 95.66 3433964.50 5792771.15 64.64 
14 3433306.37 5793589.79 68.32 3433878.89 5794729.48 96.46 
15 3432182.74 5794793.68 82.70 3434986.47 5795617.68 64.83 
16 3433375.93 5792118.37 82.52 3433472.24 5795596.28 64.88 
17 3437196.27 5793231.30 66.65 3432418.17 5794306.78 89.44 
18 3433274.27 5794611.76 95.33 3433188.66 5794734.83 94.39 
19 3433648.81 5795521.37 66.26 3433547.15 5795457.16 63.77 
20 3433557.85 5795516.02 63.13 3433622.06 5795569.52 65.36 
21 3434488.86 5793006.58 66.36 3434542.36 5793300.86 65.89 
22 3432220.19 5792733.69 78.86 3432284.40 5792856.76 77.58 
23 3433017.44 5794563.61 97.51 3434424.65 5793728.91 74.87 
24 3436275.97 5793220.60 66.13 3435152.34 5793509.53 64.43 
25 3436447.19 5794392.39 71.81 3435794.41 5793803.82 66.54 
26 3435938.88 5794788.33 65.27 3435478.72 5794360.28 65.43 
27 3433397.33 5793006.58 65.77 3433857.48 5793552.34 63.69 
28 3432985.33 5794028.54 74.26 3433070.94 5793958.99 71.95 
29 3432958.58 5794890.00 98.36 3432953.23 5794777.63 101.39 
30 3434831.30 5793691.46 79.96 3434772.44 5793782.42 68.91 
31 3434456.75 5793991.09 82.15 3434563.77 5794039.25 67.94 
32 3435232.59 5793910.83 73.06 3435125.58 5793782.42 67.86 
33 3435526.88 5793584.44 69.16 3435564.33 5793493.48 66.60 
34 3435248.65 5793167.09 64.94 3435237.95 5793236.65 72.39 
35 3434686.83 5793161.74 63.92 3434788.49 5793215.25 79.80 
36 3434900.86 5793268.76 68.80 3434788.49 5793349.02 80.36 
37 3434558.42 5794183.71 72.95 3434537.01 5794231.87 68.22 
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38 3436083.34 5793242.00 66.37 3436120.80 5793338.31 71.63 
39 3432621.49 5793498.83 80.88 3432664.30 5793755.66 76.91 
40 3434879.45 5794440.54 64.42 3434435.35 5794510.10 66.84 
41 3436704.02 5795221.73 67.03 3435414.52 5793696.81 87.66 
42 3433188.66 5794938.15 79.42 3434232.03 5794087.40 77.59 
43 3434847.35 5795093.32 77.06 3435109.53 5795168.23 106.06 
44 3435023.92 5795173.58 117.54 3434997.17 5795398.30 73.93 
45 3435307.50 5792268.19 77.60 3435462.67 5792407.31 67.72 
46 3434039.41 5792177.23 72.64 3433959.15 5792380.55 66.42 
47 3436602.35 5792546.42 67.94 3436778.92 5792316.34 73.45 
48 3432134.58 5793782.42 90.27 3432150.64 5794049.95 85.26 
49 3432016.87 5795569.52 72.88 3436987.60 5792391.25 67.99 
50 3432113.18 5795120.07 91.05 3432188.09 5795296.64 91.03 
51 3434911.56 5795542.77 66.24 3433991.25 5793739.61 65.34 
52 3433739.77 5792632.03 65.67 3433702.32 5792792.55 70.40 

Tab. 6: The X, Y and Z coordinates of the 52 observer-target pairs. 


